Solution deposition of highly transparent and conducting oxide (TCO) thin films

Invention

A simple, non-vacuum, low-cost, eco-friendly and easily upscaleable aqueous chemical deposition method for aluminum doped zinc oxide (AZO) transparent conductive thin films is presented. The new deposition process requires only minimum equipment and instrumental investments.

Background

Indium tin oxide (ITO) is currently widely used as transparent conductive electrode material. This material relies on a limited abundance of the element indium. For a cost reduction of products and sustainable growth of their use, earth abundant and inexpensive alternative TCOs are necessary – a fact also reflected in a predicted non-ITO transparent conductive oxides (TCO) market of almost 1 billion in 2016 [1]. To fully exploit the potential of alternative TCOs non-vacuum deposition techniques are essential to avoid the large equipment cost and low material utilization of commonly employed vacuum deposition methods. However, the solution deposition of TCOs faces major drawbacks such as [2]:

- time consuming high temperature annealing,
- use of toxic and/or reactive chemicals, and
- necessity of conductive substrates.

Up to now these factors prohibited an ecologic and economic efficient fabrication of TCOs. In contrast, we present a novel process with simple equipment for low cost deposition of TCOs which is applicable on any substrate – rigid or flexible.
With the new process AZO thin films are grown by aqueous chemical bath deposition overcoming all above stated drawbacks:
- the process is economically favorable being independent from any vacuum deposition steps resulting in low equipment investment costs,
- the process is easily up-scalable,
- the process relies on "off-the-shelf", easy available, low cost chemicals, and
- the process is environmental friendly and does not use any toxic/reactive chemicals and produces no toxic waste.

The aqueous solution deposition of transparent (> 90% transparency in visible light) and conductive (5x10^{-3} Ωcm) AZO films can be applied to diverse optical and opto-electronical applications such as e.g.:
- rigid substrates with excellent transmission comparable to glass
- flexible, temperature sensitive polymer substrates as demonstrated here for PET foils
- any opto-electronic devices (thin film transistors, display technology) or as window layer for solar cells of different kind – demonstrated here for a Copper Indium Gallium diselenide (CIGS) solar cell
- Further possible applications are found in the field of piezoelectrics, gas sensors or even as meta-materials, as recently reported [3].

Empa, Swiss Federal Laboratories for Materials Testing and Research, Ueberlandstrasse 129, CH-8600 Dübendorf; Patent pending


Transparent conductive oxides, non-vacuum deposition, aqueous solution deposition, chemical bath deposition, low temperature process, flexible substrates, opto-electronics, RF-shielding, antistatics, smart-windows.

Empa is an interdisciplinary research and service institution within the ETH Domain covering selected fields of materials science and technology development including important environmental issues. Empa’s R&D activities focus on the requirements of industry and the needs of society, thus linking research to engineering, and science to industry and society. As a result, Empa is capable of providing its partners with customized services and solutions that not only enhance their innovative edge, but also help to improve the quality of life for the public at large. Safety, reliability and sustainability of materials and systems are cross-sectional topics and a hallmark of all Empa activities. As such, Empa plays a key role in Switzerland’s research and innovation landscape.

© Empa 2013