leadXpro – CASE STUDY

We are committed to create new treatment options for life threatening diseases.

Problem – Challenge

The discovery and development of new drug molecules for treatment of diseases such as cancer or antibiotics that can be used for resistant bacteria is very challenging. Integral membrane proteins are responsible for key signaling and metabolic mechanisms in humans and are excellent drug targets. Drug discovery for new medicines on many membrane protein targets (e.g. GPCR’s, ion-channels and transporters) has been limited due to the lack of structural information as well as application of biophysical methods to investigate drug target protein and ligand interaction.

Solution

leadXpro will unlock promising, but challenging membrane protein drug targets and enable the discovery of novel medicines. We are committed to the application of biophysical and structure based methods for the discovery and optimization of next generation lead compounds. We capitalize on expert knowledge of the leadXpro team and the co-localization with the Paul Scherrer Institute (PSI) regarding the experience on membrane protein structural biology, the professional use of facilities like synchrotron (Swiss Light Source) and, in future, the free-electron laser (SwissFEL). Founded in December 2015 and located at the PARK innovAARE, Villigen, Aargau, leadXpro has started lab operations to create a pipeline of own projects and projects in collaborations with pharmaceutical companies.

INDUSTRY 4.0 FOR THE BATHROOM AND KITCHEN

Problem – Challenge

Taps have been manufactured in Unterkulm for over a century. Today, Franke Water Systems KWC exports products to over fifty countries and regularly takes home design awards for its high-quality products. However, the company is also faced with the challenge that customer demands are constantly increasing, with customers now wanting more than just a simple tap. “Today’s kitchens are not only a place to cook but also a living space, which means the tap has become an accessory that has its own special role to play,” comments Andreas Adam from KWC. With this in mind, the company wants to bring new taps onto the market faster. To do this, more flexibility is required in production. With funding by the Commission for Technology and Innovation (KTI), KWC and FHNW started a research project.

Solution

By fully automating the production process, it should be possible to reduce the size of the series run to a single tap. “With a smaller series run, we can react faster and the goods are back in circulation quicker,” says engineer Andreas Adam, who is responsible for launching new products at KWC. As part of a research project, the grinding and polishing process was modelled, simulated and validated. The grinding and polishing of the taps is a key step in the manufacturing process. Originally carried out by hand by experienced specialists, this step is now completed by industrial robots. The crux of the problem is that the robots have to be reprogrammed for each tap, during which time the system is at a standstill and cannot produce any more items. Based on the research work carried out at the FHNW, it was possible for this set-up time to be reduced by around 30 per cent. “This is an enormous improvement,” stresses Andreas Adam.